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1. Introduction
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Object localization

• Task: identify and locate objects in images 3
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Object Localization Applications
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Cell Phone Apps Robot Control
Self-Driving Cars

Medical Diagnosis



Object Localization

• Convolutional Neural Networks are very good at 
identifying objects, but localization is still a 
challenge
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RCNN False Positives [Source]

https://dl.dropboxusercontent.com/s/bpi3vd7gia9f6ul/rcnn-cvpr14-slides.pdf?dl=0


Object Search
• Exhaustive sliding window  approach is too slow

• Need to economize search:

• Generate object proposals based on likely 
locations

• Then do local search for object
• When CNN detector has a positive identification, the 

bounding box may be a poor fit. 

• Need way to adjust box  
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Bounding Box Regression (BBR)
• Extract CNN Features from proposed bounding box

• Estimate location and dimensions of true box through 
statistical regression on CNN features.
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Bounding Box Proposal Result of Bounding Box Regression



Ways to Improve Bounding Box 
Regression?
• BB Regression is only applied once – based on static 

analysis of features. 

• Maybe an iterative active approach could work 
better?
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My Algorithm
• Search policy aims to improve bounding box proposal 

through a sequence of transformative actions: {up, 
down, left, right, bigger smaller, fatter, taller, stop}

• Search policy is learned using reinforcement learning.
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Reinforcement Learning

• Machine Learning method that works by 
trial and error (like the way we learn)

• Agent tries actions to complete a task

• Positive rewards for advantageous 
behavior

• Negative rewards for disadvantageous 
behavior

• Repeat
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Epsilon-Greedy Algorithm

Exploration Exploitation

Try 
random 
actions 
and see 

what 
happens

Do what 
has 

earned 
rewards 

in the 
past

𝜖𝜖 (1 − 𝜖)
34



Epsilon-Greedy Variations

• Constant

• Annealing – epsilon policy where epsilon is 
gradually reduced over the course of training
• Early in training exploration emphasized, exploitation 

later in training.

• Adaptive/Contextual – epsilon changes tied to 
learning progress or context.  
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Thesis Hypothesis:

• I hypothesize that the Epsilon-greedy policy used 
during training matters for the performance of the 
search algorithm.

• I perform experiments to compare performance 
between 4 different epsilon policies.
• 3 constant value: 0.75, 0.5, 0.25
• 1 linear annealing policy. ~0.9 in beginning to ~0.1 at end of 

training

• I also explore the effect of the length of training 
(number of epochs)
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2. Background
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Reinforcement Learning (again)

• Cycle repeats until terminal state is reached. 

• One sequence of states from an initial state to the final 
state is referred to as an episode

• Agent’s Goal: learn policy 𝜋(𝑠) to maximize cumulative 
discounted rewards over course of episode. 38



States in my algorithm

• Image, bounding box

• Features extracted from 
box to inform the 
algorithm.

• Action history
• Last 10 actions taken
• [left, left, up, fatter, 

smaller,…]
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State Features - HOG
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• Histogram of 
Oriented Gradients 
(HOG) features. 

• Slopes of edges 
in images are 
computed

• Organized into histograms binned by slope 
orientation.

• Compiled (in my case) into a 2916-length vector



Reward Function: 
Intersection over Union (IOU

• IOU = 0  =>  no overlap. 

• IOU =1   => (A = B)

• IOU of bounding box to the ground truth used as goodness of fit 
measure.

• 𝑟 = ቐ
+1, Δ𝐼𝑂𝑈 > 0
−1, Δ𝐼𝑂𝑈 < 0
0, Δ𝐼𝑂𝑈 = 0

𝐴 ∪ 𝐵

𝐴

𝐵

𝐼𝑂𝑈 𝐴, 𝐵 =
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𝐴 ∩ 𝐵



Q-Learning

• In Q-Learning, the agent learns action-value function 𝑄(𝑠, 𝑎), 
which is an estimate of ‘value’ of taking action 𝑎 in state 𝑠.

• 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝜂[𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)]

• Bracketed portion = difference between old estimate 𝑄(𝑠, 𝑎) and 
the new ’target’ estimate 𝑟 + 𝛾max

𝑎′
𝑄 𝑠′, 𝑎′

• Learning rate 𝜂 is the rate at which the model updates to new 
information. 

target Learning rate: 

42



Q-Learning with Perceptrons
• Sometimes state space is prohibitively large for agent 

to explore all possible states. 

• In these cases, instead of learning what to do in a 
specific state 𝑠, we want to learn a policy for what to 
do in states similar to 𝑠. 

• To accomplish this, I approximate the Q-function using 
an ensemble of perceptrons. 

• Q-values for each action determined by a linear 
function of state features.  
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• A perceptron is an artificial neuron that takes an 
input vector 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) and returns an 
activation based on a linear application of weights.

Perceptron

𝑥1

𝑥2

𝑥3

𝑥𝑛

. . .

𝑤𝑛

𝑤3

𝑤2

𝑤1

𝑤0

1

𝑤0 + ∑𝑤𝑖𝑥𝑖 → 𝜙 𝑤0 + 𝑤 ∙ 𝑥 → 𝑦 output

Activation function

bias
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Activation Function

• Traditional step function: 𝜙 𝑧 = ቊ
0, 𝑧 < 0
1, 𝑧 ≥ 0

• Useful for binary classifications

• Sometimes, the discontinuity at 0 is not desirable 
because a small change in weights causes a reversal in 
classification. 

• Sigmoid function: 𝜎 𝑧 =
1

1+𝑒−𝑧

• Continuous approximation of step function

• My model uses sigmoid activation
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Update Rule for Q-Learning with Perceptrons
• Perceptron weights updated according to

𝑤𝑖 ← 𝑤𝑖 + 𝜂 𝑡 − 𝑦 𝑥𝑖

• Q-values updated according to

• Agent takes action 𝑎𝑘 in state 𝑠, weight 𝑊𝑘𝑖 is updated according to 

𝑊𝑘𝑖 ← 𝑊𝑘𝑖 + 𝜂(𝜎(𝑟 + 𝛾max
𝑎′

𝑄(𝑠′, 𝑎′)) − 𝑄(𝑠, 𝑎𝑘))𝑠𝑖
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target old Q-value

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝜂[𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)]

target perceptron output

perceptron outputtarget



Back to Q-Learning

• States represented as an input vector 𝑠 = 𝑠1, … 𝑠𝑛 to 
a perceptron. → 𝑛 + 1 weights (including bias)  

• Let there be 𝑚 actions, with one perceptron per action.
• Weights organized into a 𝑚 × (𝑛 + 1) matrix 𝑊.
• Q-values computed as below
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3. Methods
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Dataset:

• Portland State Dog Walking Images 

• Contains human-drawn ground truth labels for dogs, and 
humans.

• For each object category (dogs, humans), I split images into 
training set of size 400, and a test set of size 100
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Bounding Box representation

• Box = 𝑥, 𝑦, 𝑤, ℎ

• 𝑥, 𝑦 = bounding box’s center location

• (𝑤, ℎ) = box’s width, height 
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Generating Initial Bounding Boxes 
(skews)
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• 10 skews created per 
object.

• Bounding box components 
𝑥, 𝑦, 𝑤, ℎ shifted from 

ground truth according to 
random normal 
distribution.

• Standard deviation 
proportionate to width or 
height of ground truth box.



Parameters

• Learning rate 𝜂 = 0.2

• Discount Factor  𝛾 = 0.9

• Actions Per Episode = 15

• Number of Epochs = 200 (and lower)

• Epsilon (varied)
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Experiment Design

• Constant epsilon values: 0.75, 0.5, 0.25

• Annealing: epsilon 𝜖 = 0.904 − 0.004𝑥

• 5 runs for each epsilon-greedy policy. 

• Done for both ‘dog’ and ‘human’ categories.

(mostly exploration), (evenly balanced), (mostly exploitation)
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Testing

• 100 images x 10 skews/image = 1000 examples

• Algorithm mostly same as training: 15 actions per 
episode

• Actions chosen solely on Q-value (epsilon = 0)

• Weights are not updated (no need to compute 
rewards)

• Performance measures:
• Average Change in IOU

• Success Rate = Fraction of bounding boxes improved.
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4. Results
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Effect of Epsilon 1
– Average change in IOU
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Effect of Epsilon 2
– Success Rate (percent improved)



Effect of Initial Bounding Box IOU-Value 
Dogs 

Highest performing ‘dog’ category run with annealing: 
Mean IOU Improvement = 0.135, 

Success Rate = 78.9% 
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Effect of Initial Bounding Box IOU-Value –
Humans 

Highest performing ‘human’ category run with annealing: 
Mean IOU Improvement = 0.143, 

Success Rate = 78.4% 
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Average Reward Per Episode
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Effect of Number of Epochs
Success Rate by Epoch - Dogs
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Effect of Number of Epochs
Success Rate by Epoch - Humans
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5. Conclusion and 
Future Work
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Conclusions and Future Work

• Annealing appears to work best

• Annealing runs may be under trained.

• Performance higher for dogs than humans- why?

• Other future work:
• Use CNN features

• More sophisticated stopping mechanism – stop action 
triggers end of episode. 

• Rigorous comparison with bounding box 
regression.
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End
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Additional Slides
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Training Algorithm 

• For epoch=1 to 200:

• Shuffle the training set; 

• For each (img, skew) in training set: 

• current_box ← skew; 

• Initialize state 𝑠 ← HOG features from skew, 0 history vector; 

• For step = 1 to 15:

• Select action 𝑎 according to epsilon-greedy.; 

• Take action 𝑎 to obtain new_box; 

• Add 𝑎 to history vector; 

• Extract HOG features from new_box and combine with history 
vector to obtain state 𝑠′;

• Compute change in IOU-value to obtain reward 𝑟; 

• Compute max
𝑎′

𝑄(𝑠′, 𝑎′) ;

• Update perceptron weights according to

• 𝑤𝑖 ← 𝑤𝑖 + 𝜂(𝜎(𝑟 + 𝛾max
𝑎′

𝑄(𝑠′, 𝑎′)) − 𝑄(𝑠, 𝑎))𝑠𝑖

• current_box ← new_box; 

• 𝑠 ← 𝑠′ ; 
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Cell Phone Apps (Google Lens)
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Robot Control

• Source
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https://www.azorobotics.com/Article.aspx?ArticleID=91


Self-Driving Cars

70Source

https://www.xsens.com/customer-cases/vector-ai-shaping-the-future-for-autonomous-driving/


Medical Imaging

71

Blood cell classification from:

G. Karkavitsas, M. Rangoussi Object localization in medical images using genetic algorithms 

https://waset.org/publications/6138/object-localization-in-medical-images-using-genetic-algori


Markov Decision Processes
• RL Models are typically represented as Markov Decision 

Processes

• Markov Decision Processes (MDP) have the following 
components:
• 𝑆 = Set of states, including initial state 𝑠0 and terminal state 
𝑠𝑇

• 𝐴 = Set of actions agent may take
• Transition rules that determine the next state given the 

previous state and the action taken by the agent. The 
transition rules may be probabalistic: 𝑃 𝑠𝑡+1 = 𝑠′ 𝑠𝑡 =
𝑠, 𝑎𝑡 = 𝑎)

• Reward function 𝑟(𝑠, 𝑎)
• 𝛾 =discount factor. Weighs value of future rewards against 

present reward.
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Histogram of Oriented Gradients

• Image region divided into cells,

• Within each cell, gradients are computed, (change 
in intensity with respect to x and y) 

• Gradients compiled into histograms organized by 
cell. 
• Bins separated by orientation 
• 0-180° for unsigned gradients (which I use)
• 0-360 ° signed gradients
• Gradients normalized by “block”, which is a larger region 

encompassing each cell. 

• scikit-image Library used to compute HOG [2].
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HOG Examples
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HOG, continued

Block: 3x3 cells

Cell: 
16x16 pixels

• 180° divided 
into 9 
histogram 
bins

HOG array shape: (6, 6, 3, 3, 9)  → HOG Feature vector with 6 x 6 x 3 x 3 x 9 = 2916 features 

blocks cells bins
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State Definition 

• State vectors are a concatenation of HOG features 
drawn from the bounding box, and history features. 

• HOG array shape: (6, 6, 3, 3, 9)  → HOG Feature 
vector with 6 x 6 x 3 x 3 x 9 = 2916 features 

• Action history vector:
• Each action encoded as a length-9 bit vector.

• Last ten actions are recorded

• So history vector has 9 × 10 = 90 features

• Combined state vector: 2916 + 90 = 3006
features
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Action definitions
Given a bounding box 𝑏 = 𝑥, 𝑦, 𝑤, ℎ :

• left/right:  𝑥 ← 𝑥 ± 𝛼𝑥

• up/down: 𝑦 ← 𝑦 ± 𝛼ℎ

• bigger/smaller:  𝑤 ← 𝑤 ± 𝛼𝑤, ℎ ← ℎ ± 𝛼ℎ

• fatter:  𝑤 ← 𝑤 + 𝛼𝑤

• taller: ℎ ← ℎ + 𝛼ℎ

• stop: no change in 𝑏

• Shift factor 𝛼 = 0.1
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Training Algorithm 

• Repeat for N epochs:

• For each (img, skew) in training set: 

• current_box ← skew; 

• Initialize state 𝑠 ← HOG features from skew, 0 history vector; 

• For action = 1 to 15:

• Agent adjusts the box according to to epsilon-greedy. State 
𝑠′ obtained; 

• Compute change in IOU-value to obtain reward 𝑟; 

• Update perceptron weights;

• 𝑤𝑖 ← 𝑤𝑖 + 𝜂(𝜎(𝑟 + 𝛾max
𝑎′

𝑄(𝑠′, 𝑎′)) − 𝑄(𝑠, 𝑎))𝑠𝑖

• current_box ← new_box; 

• 𝑠 ← 𝑠′ ; 
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