
Bounding Box
Improvement With

Reinforcement Learning
Andrea Cleland

Master’s Thesis Defense

Portland State University

2018

1

1. Introduction

2

Object localization

• Task: identify and locate objects in images 3

Ferris Wheel

Person 1
Person 2

Dog

Person 3
Person 4

Object Localization Applications

4

Cell Phone Apps Robot Control
Self-Driving Cars

Medical Diagnosis

Object Localization

• Convolutional Neural Networks are very good at
identifying objects, but localization is still a
challenge

5

RCNN False Positives [Source]

https://dl.dropboxusercontent.com/s/bpi3vd7gia9f6ul/rcnn-cvpr14-slides.pdf?dl=0

Object Search
• Exhaustive sliding window approach is too slow

• Need to economize search:

• Generate object proposals based on likely
locations

• Then do local search for object
• When CNN detector has a positive identification, the

bounding box may be a poor fit.

• Need way to adjust box

6

Bounding Box Regression (BBR)
• Extract CNN Features from proposed bounding box

• Estimate location and dimensions of true box through
statistical regression on CNN features.

7

Bounding Box Proposal Result of Bounding Box Regression

Ways to Improve Bounding Box
Regression?
• BB Regression is only applied once – based on static

analysis of features.

• Maybe an iterative active approach could work
better?

8

My Algorithm
• Search policy aims to improve bounding box proposal

through a sequence of transformative actions: {up,
down, left, right, bigger smaller, fatter, taller, stop}

• Search policy is learned using reinforcement learning.

9

10

Initial box

11

Fatter

12

13

Up

14

15

Fatter

16

17

Left

18

19

Smaller

20

21

Fatter

22

23

Down

24

25

Taller

26

27

Taller

28

29

Left

30

31

Down

32

Done

Done

Reinforcement Learning

• Machine Learning method that works by
trial and error (like the way we learn)

• Agent tries actions to complete a task

• Positive rewards for advantageous
behavior

• Negative rewards for disadvantageous
behavior

• Repeat

33

Epsilon-Greedy Algorithm

Exploration Exploitation

Try
random
actions
and see

what
happens

Do what
has

earned
rewards

in the
past

𝜖𝜖 (1 − 𝜖)
34

Epsilon-Greedy Variations

• Constant

• Annealing – epsilon policy where epsilon is
gradually reduced over the course of training
• Early in training exploration emphasized, exploitation

later in training.

• Adaptive/Contextual – epsilon changes tied to
learning progress or context.

35

Thesis Hypothesis:

• I hypothesize that the Epsilon-greedy policy used
during training matters for the performance of the
search algorithm.

• I perform experiments to compare performance
between 4 different epsilon policies.
• 3 constant value: 0.75, 0.5, 0.25
• 1 linear annealing policy. ~0.9 in beginning to ~0.1 at end of

training

• I also explore the effect of the length of training
(number of epochs)

36

2. Background

37

Reinforcement Learning (again)

• Cycle repeats until terminal state is reached.

• One sequence of states from an initial state to the final
state is referred to as an episode

• Agent’s Goal: learn policy 𝜋(𝑠) to maximize cumulative
discounted rewards over course of episode. 38

States in my algorithm

• Image, bounding box

• Features extracted from
box to inform the
algorithm.

• Action history
• Last 10 actions taken
• [left, left, up, fatter,

smaller,…]

39

State Features - HOG

40

• Histogram of
Oriented Gradients
(HOG) features.

• Slopes of edges
in images are
computed

• Organized into histograms binned by slope
orientation.

• Compiled (in my case) into a 2916-length vector

Reward Function:
Intersection over Union (IOU

• IOU = 0 => no overlap.

• IOU =1 => (A = B)

• IOU of bounding box to the ground truth used as goodness of fit
measure.

• 𝑟 = ቐ
+1, Δ𝐼𝑂𝑈 > 0
−1, Δ𝐼𝑂𝑈 < 0
0, Δ𝐼𝑂𝑈 = 0

𝐴 ∪ 𝐵

𝐴

𝐵

𝐼𝑂𝑈 𝐴, 𝐵 =

41

𝐴 ∩ 𝐵

Q-Learning

• In Q-Learning, the agent learns action-value function 𝑄(𝑠, 𝑎),
which is an estimate of ‘value’ of taking action 𝑎 in state 𝑠.

• 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝜂[𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)]

• Bracketed portion = difference between old estimate 𝑄(𝑠, 𝑎) and
the new ’target’ estimate 𝑟 + 𝛾max

𝑎′
𝑄 𝑠′, 𝑎′

• Learning rate 𝜂 is the rate at which the model updates to new
information.

target Learning rate:

42

Q-Learning with Perceptrons
• Sometimes state space is prohibitively large for agent

to explore all possible states.

• In these cases, instead of learning what to do in a
specific state 𝑠, we want to learn a policy for what to
do in states similar to 𝑠.

• To accomplish this, I approximate the Q-function using
an ensemble of perceptrons.

• Q-values for each action determined by a linear
function of state features.

43

• A perceptron is an artificial neuron that takes an
input vector 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) and returns an
activation based on a linear application of weights.

Perceptron

𝑥1

𝑥2

𝑥3

𝑥𝑛

. . .

𝑤𝑛

𝑤3

𝑤2

𝑤1

𝑤0

1

𝑤0 + ∑𝑤𝑖𝑥𝑖 → 𝜙 𝑤0 + 𝑤 ∙ 𝑥 → 𝑦 output

Activation function

bias

44

Activation Function

• Traditional step function: 𝜙 𝑧 = ቊ
0, 𝑧 < 0
1, 𝑧 ≥ 0

• Useful for binary classifications

• Sometimes, the discontinuity at 0 is not desirable
because a small change in weights causes a reversal in
classification.

• Sigmoid function: 𝜎 𝑧 =
1

1+𝑒−𝑧

• Continuous approximation of step function

• My model uses sigmoid activation

45

Update Rule for Q-Learning with Perceptrons
• Perceptron weights updated according to

𝑤𝑖 ← 𝑤𝑖 + 𝜂 𝑡 − 𝑦 𝑥𝑖

• Q-values updated according to

• Agent takes action 𝑎𝑘 in state 𝑠, weight 𝑊𝑘𝑖 is updated according to

𝑊𝑘𝑖 ← 𝑊𝑘𝑖 + 𝜂(𝜎(𝑟 + 𝛾max
𝑎′

𝑄(𝑠′, 𝑎′)) − 𝑄(𝑠, 𝑎𝑘))𝑠𝑖

46

target old Q-value

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝜂[𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)]

target perceptron output

perceptron outputtarget

Back to Q-Learning

• States represented as an input vector 𝑠 = 𝑠1, … 𝑠𝑛 to
a perceptron. → 𝑛 + 1 weights (including bias)

• Let there be 𝑚 actions, with one perceptron per action.
• Weights organized into a 𝑚 × (𝑛 + 1) matrix 𝑊.
• Q-values computed as below

47

3. Methods

48

Dataset:

• Portland State Dog Walking Images

• Contains human-drawn ground truth labels for dogs, and
humans.

• For each object category (dogs, humans), I split images into
training set of size 400, and a test set of size 100

49

Bounding Box representation

• Box = 𝑥, 𝑦, 𝑤, ℎ

• 𝑥, 𝑦 = bounding box’s center location

• (𝑤, ℎ) = box’s width, height

50

Generating Initial Bounding Boxes
(skews)

51

• 10 skews created per
object.

• Bounding box components
𝑥, 𝑦, 𝑤, ℎ shifted from

ground truth according to
random normal
distribution.

• Standard deviation
proportionate to width or
height of ground truth box.

Parameters

• Learning rate 𝜂 = 0.2

• Discount Factor 𝛾 = 0.9

• Actions Per Episode = 15

• Number of Epochs = 200 (and lower)

• Epsilon (varied)

52

Experiment Design

• Constant epsilon values: 0.75, 0.5, 0.25

• Annealing: epsilon 𝜖 = 0.904 − 0.004𝑥

• 5 runs for each epsilon-greedy policy.

• Done for both ‘dog’ and ‘human’ categories.

(mostly exploration), (evenly balanced), (mostly exploitation)

53

Testing

• 100 images x 10 skews/image = 1000 examples

• Algorithm mostly same as training: 15 actions per
episode

• Actions chosen solely on Q-value (epsilon = 0)

• Weights are not updated (no need to compute
rewards)

• Performance measures:
• Average Change in IOU

• Success Rate = Fraction of bounding boxes improved.

54

4. Results

55

Effect of Epsilon 1
– Average change in IOU

56

57

Effect of Epsilon 2
– Success Rate (percent improved)

Effect of Initial Bounding Box IOU-Value
Dogs

Highest performing ‘dog’ category run with annealing:
Mean IOU Improvement = 0.135,

Success Rate = 78.9%

58

Effect of Initial Bounding Box IOU-Value –
Humans

Highest performing ‘human’ category run with annealing:
Mean IOU Improvement = 0.143,

Success Rate = 78.4%

59

Average Reward Per Episode

60

Effect of Number of Epochs
Success Rate by Epoch - Dogs

61

Effect of Number of Epochs
Success Rate by Epoch - Humans

62

5. Conclusion and
Future Work

63

Conclusions and Future Work

• Annealing appears to work best

• Annealing runs may be under trained.

• Performance higher for dogs than humans- why?

• Other future work:
• Use CNN features

• More sophisticated stopping mechanism – stop action
triggers end of episode.

• Rigorous comparison with bounding box
regression.

64

End

65

Additional Slides

66

Training Algorithm

• For epoch=1 to 200:

• Shuffle the training set;

• For each (img, skew) in training set:

• current_box ← skew;

• Initialize state 𝑠 ← HOG features from skew, 0 history vector;

• For step = 1 to 15:

• Select action 𝑎 according to epsilon-greedy.;

• Take action 𝑎 to obtain new_box;

• Add 𝑎 to history vector;

• Extract HOG features from new_box and combine with history
vector to obtain state 𝑠′;

• Compute change in IOU-value to obtain reward 𝑟;

• Compute max
𝑎′

𝑄(𝑠′, 𝑎′) ;

• Update perceptron weights according to

• 𝑤𝑖 ← 𝑤𝑖 + 𝜂(𝜎(𝑟 + 𝛾max
𝑎′

𝑄(𝑠′, 𝑎′)) − 𝑄(𝑠, 𝑎))𝑠𝑖

• current_box ← new_box;

• 𝑠 ← 𝑠′ ;
67

Cell Phone Apps (Google Lens)

68

Robot Control

• Source

69

https://www.azorobotics.com/Article.aspx?ArticleID=91

Self-Driving Cars

70Source

https://www.xsens.com/customer-cases/vector-ai-shaping-the-future-for-autonomous-driving/

Medical Imaging

71

Blood cell classification from:

G. Karkavitsas, M. Rangoussi Object localization in medical images using genetic algorithms

https://waset.org/publications/6138/object-localization-in-medical-images-using-genetic-algori

Markov Decision Processes
• RL Models are typically represented as Markov Decision

Processes

• Markov Decision Processes (MDP) have the following
components:
• 𝑆 = Set of states, including initial state 𝑠0 and terminal state
𝑠𝑇

• 𝐴 = Set of actions agent may take
• Transition rules that determine the next state given the

previous state and the action taken by the agent. The
transition rules may be probabalistic: 𝑃 𝑠𝑡+1 = 𝑠′ 𝑠𝑡 =
𝑠, 𝑎𝑡 = 𝑎)

• Reward function 𝑟(𝑠, 𝑎)
• 𝛾 =discount factor. Weighs value of future rewards against

present reward.

72

Histogram of Oriented Gradients

• Image region divided into cells,

• Within each cell, gradients are computed, (change
in intensity with respect to x and y)

• Gradients compiled into histograms organized by
cell.
• Bins separated by orientation
• 0-180° for unsigned gradients (which I use)
• 0-360 ° signed gradients
• Gradients normalized by “block”, which is a larger region

encompassing each cell.

• scikit-image Library used to compute HOG [2].

73

HOG Examples

74

HOG, continued

Block: 3x3 cells

Cell:
16x16 pixels

• 180° divided
into 9
histogram
bins

HOG array shape: (6, 6, 3, 3, 9) → HOG Feature vector with 6 x 6 x 3 x 3 x 9 = 2916 features

blocks cells bins
75

State Definition

• State vectors are a concatenation of HOG features
drawn from the bounding box, and history features.

• HOG array shape: (6, 6, 3, 3, 9) → HOG Feature
vector with 6 x 6 x 3 x 3 x 9 = 2916 features

• Action history vector:
• Each action encoded as a length-9 bit vector.

• Last ten actions are recorded

• So history vector has 9 × 10 = 90 features

• Combined state vector: 2916 + 90 = 3006
features

76

Action definitions
Given a bounding box 𝑏 = 𝑥, 𝑦, 𝑤, ℎ :

• left/right: 𝑥 ← 𝑥 ± 𝛼𝑥

• up/down: 𝑦 ← 𝑦 ± 𝛼ℎ

• bigger/smaller: 𝑤 ← 𝑤 ± 𝛼𝑤, ℎ ← ℎ ± 𝛼ℎ

• fatter: 𝑤 ← 𝑤 + 𝛼𝑤

• taller: ℎ ← ℎ + 𝛼ℎ

• stop: no change in 𝑏

• Shift factor 𝛼 = 0.1

77

Training Algorithm

• Repeat for N epochs:

• For each (img, skew) in training set:

• current_box ← skew;

• Initialize state 𝑠 ← HOG features from skew, 0 history vector;

• For action = 1 to 15:

• Agent adjusts the box according to to epsilon-greedy. State
𝑠′ obtained;

• Compute change in IOU-value to obtain reward 𝑟;

• Update perceptron weights;

• 𝑤𝑖 ← 𝑤𝑖 + 𝜂(𝜎(𝑟 + 𝛾max
𝑎′

𝑄(𝑠′, 𝑎′)) − 𝑄(𝑠, 𝑎))𝑠𝑖

• current_box ← new_box;

• 𝑠 ← 𝑠′ ;

78

