Bounding Box
Improvement With
Reinforcement Learning

Andrea Cleland
Master’s Thesis Defense

Portland State University
2018

1. Introduction

Object localization

LS

(I
."W"l ' bd

Ferris Wheel

* Task: identify and locate objects in images

Object Localization Applications

Self-Driving Cars
Cell Phone Apps Robot Control 5

20 9.4 0 448

VOL.CLXVII

AS LEADERS FEUD

Democrats Are Reluctant
to Help Fix Overhaul
1 hey ()D[)Oscd

Text selection

**All the News
That's Fit to Print"

VOL. CXVIL.... No. 57,898 © 2018 The New York!

TAX LAW'S ERRORS
SHAKE EMPLOYERS
AS LEADERS FEUD

Medical Diagnosis

Object Localization

e Convolutional Neural Networks are very good at
identifying objects, but localization is still a
challenge

RCNN False Positives [Source]

Ic):ov=0.41 1-r=0.64 bicycl (Ioc):ov=35 1-r=0. ~ % bicycle (loc): ov=0.15 1-r=0.59 bicycle (loc): ov=0.44 1-r=0.57

(

ycI

https://dl.dropboxusercontent.com/s/bpi3vd7gia9f6ul/rcnn-cvpr14-slides.pdf?dl=0

Object Search

e Exhaustive sliding window approach is too slow
* Need to economize search:

* Generate object proposals based on likely
locations

* Then do local search for object

* When CNN detector has a positive identification, the
bounding box may be a poor fit.

* Need way to adjust box

aeroplane? no.

person? yes.

tvmonitor? no.

Bounding Box Regression (BBR)

e Extract CNN Features from proposed bounding box

* Estimate location and dimensions of true box through
statistical regression on CNN features.

Bounding Box Proposal Result of Bounding Box Regression

Ways to Improve Bounding Box
Regression?

* BB Regression is only applied once — based on static
analysis of features.

* Maybe an iterative active approach could work
better?

My Algorithm

 Search policy aims to improve bounding box proposal
through a sequence of transformative actions: {up,
down, left, right, bigger smaller, fatter, taller, stop}

 Search policy is learned using reinforcement learning.

Q
3
1
!
L
'
1l
'

S e e By =3 .
RO AR iR - AR
6. left 7. smaller

;- . -‘-«/ g7
S 4 ' Y

Aas 7 :".:.1'-,"'.
5. stop

2

0. fatter 1. stop 2. fatter | 3. up . fatter

= '

" ¢
s :
2 R
A |

_ A . - >
- (N, - dinn 7. C 58 N oot
= Pl - 2 vt ¢ n‘&'. 5 -

W oty Wl 2 R

1-0. dowﬁ : 11. taller 12. taller 13. Iefth 14. ;ibwn 15. dbﬁe

'

9. stop -

o

8. fatter

Initial box

10

Fatter

11

12

13

14

[Tp}
—

16

~
—

18

()]
—

20

—
(@}

22

(82}
(@}

24

LN
(@}

26

~
(@

28

()]
(@]

o
on

—
(9]

N
(9]

Reinforcement Learning

Machine Learning method that works by
trial and error (like the way we learn)

Agent tries actions to complete a task

Positive rewards for advantageous
behavior

Negative rewards for disadvantageous
behavior

Repeat

Epsilon-Greedy Algorithm

Exploration Exploitation

Try Do what
random 1ER
actions earned

and see rewards
what in the
happens past

€ € (1—¢)

34

Epsilon-Greedy Variations

* Constant

* Annealing — epsilon policy where epsilon is
gradually reduced over the course of training

e Early in training exploration emphasized, exploitation
later in training.

» Adaptive/Contextual — epsilon changes tied to
learning progress or context.

Thesis Hypothesis:

* | hypothesize that the Epsilon-greedy policy used
during training matters for the performance of the
search algorithm.

* | perform experiments to compare performance
between 4 different epsilon policies.
e 3 constant value: 0.75, 0.5, 0.25

* 1 linear annealing policy. ~¥0.9 in beginning to ~0.1 at end of
training

* | also explore the effect of the length of training
(number of epochs)

2. Background

Reinforcement Learning (again)
- > Agent N

-
State Reward Action
S r a

[.
\ Environment]«J

* Cycle repeats until terminal state is reached.

* One sequence of states from an initial state to the final
state is referred to as an episode

* Agent’s Goal: learn policy m(s) to maximize cumulative
discounted rewards over course of episode.

States in my algorithm

* Image, bounding box

e Features extracted from
box to inform the
algorithm.

 Action history
e Last 10 actions taken

* [left, left, up, fatter,
smaller,...]

39

State Features - HOG

Input image Histogram of Oriented Gradients o Histogram Of
' " Lbsiakaadatd Oriented Gradients
cikihiicikgbacaal (HOG) features.

@l ° Slopes of edges
In images are
computed

* Organized into histograms binned by slope
orientation.

* Compiled (in my case) into a 2916-length vector

40

Reward Function:
ntersection over Union (IOU

IOU(A, B) = ﬁ

b AUB

* |[OU =0 => no overlap.
e [IOU=1 =>(A=B)

* 10U of bounding box to the ground truth used as goodness of fit
measure.

+1, AIOU >0
r=4—1, AIOU <0
0, AIOU =0

Q-Learning

In Q-Learning, the agent learns action-value function Q (s, a),
which is an estimate of ‘value’ of taking action a in state s.

Q(s,a) « Q(s,a) +n[r + ymaxQ(s’,a’) — Q(s, a)]

Learning rate: target

Bracketed portion = difference between old estimate Q (s, a) and
the new "target’ estimate r + ymax Q(s’,a’)

al
Learning rate n is the rate at which the model updates to new
information.

Q-Learning with Perceptrons

* Sometimes state space is prohibitively large for agent
to explore all possible states.

* In these cases, instead of learning what to doin a
specific state s, we want to learn a policy for what to
do in states similar to s.

* To accomplish this, | approximate the Q-function using
an ensemble of perceptrons.

* Q-values for each action determined by a linear
function of state features.

Perceptron

* A perceptron is an artificial neuron that takes an
input vector x = (x4, X5, ..., X,) and returns an
activation based on a linear application of weights.

\ctiva

ion f

Inction

Activation Function

0, z<0

» Traditional step function: ¢(z) = {1 z=0

* Useful for binary classifications

* Sometimes, the discontinuity at O is not desirable
because a small change in weights causes a reversal in
classification.

1
1+e— %

* Sigmoid function: o(z) =

e Continuous approximation of step function
My model uses sigmoid activation

Update Rule for Q-Learning with Perceptrons

* Perceptron weights updated according to

Wi < w; +7795—}Qxi

target perceptron output

e Q-values updated according to
Q(s,a) « Q(s,a) + n[r + ymax Q(s',a") — Q(s,a)]
a

/

target old Q-value

* Agent takes action ay in state s, weight W,,; is updated according to

Wi « Wy +n(o(r+vy max Q(s',a")) —Q(s, ax))s;
4

target perceptron output

46

Back to Q-Learning

» States represented as an input vector s = (s4, ... Sp,) to
a perceptron. 2 n + 1 weights (including bias)

* Let there be m actions, with one perceptron per action.
* Weights organized intoam X (n + 1) matrix W.
* Q-values computed as below

(’u;l” Wy Wiz ... “u,-*ln\ (1 \ (ql\ (Q(‘? a) \

Woy W11 Wia ... Wip Sq o Q(s,as)

\(wm{] W1 Wm2 .. Wmn, / \Sn) \q'n':, / \Q(S: U—*m))

3. Methods

Dataset:

e Portland State Dog Walking Images

e Contains human-drawn ground truth labels for dogs, and
humans.

* For each object category (dogs, humans), | split images into
training set of size 400, and a test set of size 100

49

Bounding Box representation

* Box = (x,y,w, h)
* (x,y) = bounding box’s center location
* (w, h) = box’s width, height

Generating Initial Bounding Boxes
(skews)

it . 10 skews created per
object.

(x,y,w, h) shifted from
ground truth according to
- random normal

| - distribution.

' ' i - | e
f
o) ' &

* Standard deviation
- % proportionate to width or
height of ground truth box.

51

Parameters

* Learning raten = 0.2

* Discount Factor y = 0.9

* Actions Per Episode = 15

 Number of Epochs = 200 (and lower)
* Epsilon (varied)

Experiment Design

* Constant epsilon values: 0.75, 0.5, 0.25
—

(mostly exploration), (evenly balanced), (mostly exploitation)
* Annealing: epsilon e = 0.904 — 0.004x

* 5 runs for each epsilon-greedy policy.
* Done for both ‘dog’ and ‘human’ categories.

Testing

* 100 images x 10 skews/image = 1000 examples

* Algorithm mostly same as training: 15 actions per
episode

* Actions chosen solely on Q-value (epsilon = 0)

* Weights are not updated (no need to compute
rewards)

* Performance measures:
* Average Change in IOU
» Success Rate = Fraction of bounding boxes improved.

4. Results

Effect of Epsilon 1
— Average change in IOU

Average Change in IOU

Il Dogs
0.125 9 mmm Humans

0.100 A

0.075 A

0.050 A

0.025 A

0.000 ~

Mean Average Change in IOU

—0.025 A

—0.050 A

0.25 0.5 0.75 Annealed
Epsilon

Effect

— Success Rate (percent improved)

Mean Success Rate
o o o o o (@] (@]
- N W N U oW

o
o

of Epsilon 2

Success Rate

0.25 0.5 0.75 Annealed
Epsilon

57

Final IOU-Value
o o o =
N (@) (00] o

o
o

©
N

Effect of Initial Bounding Box I0U-Value

Dogs

0.0 0.2 0.4 0.6 0.8
Initial IOU-Value

Average Change in 10U

01 02 03 04 05 06 07 08 009
Initial IOU

Highest performing ‘dog’ category run with annealing:
Mean IOU Improvement = 0.135,
Success Rate = 78.9%

58

Effect of Initial Bounding Box IOU-Value —

Humans

0.9

0.8

0.7

0.6

02 03 04 05

0.1

oNn[eA-NOol |euld

Initial IOU

Highest performing ‘human’ category run with annealing:

Initial IOU-Value

0.143,

Mean IOU Improvement

78.4%

Success Rate

59

Average Reward Per Episode

0.225 A

= N
=~ [=]
w [=]

0.050 ~

Mean Average Reward

Average Reward by Epoch - Dogs

i

—— g-annealed
£=0.25

— £=0.5

— £=0.75

T T T T T T T T T
0 25 50 75 100 125 150 175 200

Epochs Trained

Mean Average Reward

0.200 4

<
i
¥
w

0.100 ~

0.075

0.050 4

0.025 4

Average Reward by Epoch - Humans

—— g-annealed

£=0.25
— £=05
— £=0.75

T T T T T T T T T
0 25 50 73 100 125 150 175 200

Epochs Trained

60

Effect of Number of Epochs
Success Rate by Epoch - Dogs

Learning Curves - Dogs

2
=]
i

e
Ln
i

Average Success Rate
o o
[#5] o

— g-annealed
£=0.25
2 — £=05
o1 —_— e =0.75
EE) 2|5 5|D ?I'j l[I}{] 12I 5 15I 0 l?l 5 2 [I}CI

Epochs Trained

61

Effect of Number of Epochs
Success Rate by Epoch - Humans

Learning Curves - Humans

0.5
)
e
([
o
v 0.4-
Q
[
L
-
U 53
@
o
©
T — g-annealed
= 0.2
< Y £=0.25

—— £=0.5
01 — £=0.75
E] 2|5 EID ?I'j ltll{] 12I 5 15I 0 lT-I’ 5 2 [I}CI

Epochs Trained

5. Conclusion and
Future Work

Conclusions and Future Work

* Annealing appears to work best
* Annealing runs may be under trained.
* Performance higher for dogs than humans- why?

e Other future work:
* Use CNN features
* More sophisticated stopping mechanism — stop action
triggers end of episode.
* Rigorous comparison with bounding box
regression.

End

Additional Slides

Training Algorithm

* For epoch=1 to 200:
e Shuffle the training set;

* For each (img, skew) in training set:
e current_box & skew;

* Initialize state s < HOG features from skew, 0 history vector;

* Forstep =1to 15:

Select action a according to epsilon-greedy.;
Take action a to obtain new_box;
Add a to history vector;

Extract HOG features from new_box and combine with history
vector to obtain state s';

Compute change in I0U-value to obtain reward 7;
Compute max Q(s’,a’);
al
Update perceptron weights according to
* wp e wp+n(o(r+ymaxQ(s’,a")) —Q(s,a))s;
a’
current_box < new_box;
s& s’

Cell Phone Apps (Google Lens

30 o4 W 448 0o .4 m 511

VOL.CLXVII No. 57,898

Democrats Are Reluctant
to Help Fix Overhauy|
They Opposed

Text selection

**All the News
That's Fit to Print"

VOL. CXVIL.... No. 57,898 © 2018 The New York!
TAX LAW'S ERRORS

SHAKE EMPLOYERS
AS LEADERS FEUD

Google Lens

——
=% Similar products

Brown Cow Greek
Yogurt - Salted
Caramel - 5.3 oz tub

Text selection

Brown Cow Nonfat
Plain Greek Yogurt -
5.3 0z cup

——=

-

|

N

—

i

Brown Cov
Fat Greek '
Peach- 5.

68

Robot Control

 Source

69

https://www.azorobotics.com/Article.aspx?ArticleID=91

Selt-Driving Cars

car 0.997

cérO - = T

Source

car 0.953, gg7
P

g

a2

car 0.992

70

https://www.xsens.com/customer-cases/vector-ai-shaping-the-future-for-autonomous-driving/

Medical Imaging

Blood cell classification from:

G. Karkavitsas, M. Rangoussi Object localization in medical images using genetic algorithms

https://waset.org/publications/6138/object-localization-in-medical-images-using-genetic-algori

Markov Decision Processes

* RL Models are typically represented as Markov Decision
Processes

* Markov Decision Processes (MDP) have the following
components:

e § = Set of states, including initial state sy and terminal state
ST

A = Set of actions agent may take

Transition rules that determine the next state given the
previous state and the action taken by the agent. The

transition rules may be probabalistic: P(s¢41 = s'|s¢ =
S, at = a)

Reward function (s, a)

* ¥ =discount factor. Weighs value of future rewards against
present reward.

Histogram of Oriented Gradients

* Image region divided into cells,

e Within each cell, gradients are computed, (change
in intensity with respect to x and y)

* Gradients compiled into histograms organized by
cell.
* Bins separated by orientation
e 0-180° for unsigned gradients (which | use)
* 0-360 ° signed gradients
* Gradients normalized by “block”, which is a larger region
encompassing each cell.

* scikit-image Library used to compute HOG [2].

Input image

HOG Examples

Histogram of Oriented Gradients

74

HOG, continued

Histogram of Oriented Gradients

Input image

Block: 3x3 cells

Cell:
16x16 pixels

* 180° divided
into 9
histogram
bins

HOG array shape: (6, 6, 3, 3,9) = HOG Feature vector with 6 x 6 x 3 x 3 x 9 = 2916 features
blocks cells bins
75

State Definition

e State vectors are a concatenation of HOG features
drawn from the bounding box, and history features.

 HOG array shape: (6, 6, 3, 3, 9) = HOG Feature
vector with 6 x 6 x 3 x 3 x9 = 2916 features

* Action history vector:
e Each action encoded as a length-9 bit vector.
* Last ten actions are recorded
* So history vector has 9 X 10 = 90 features

e Combined state vector: 2916 + 90 = 3006
features

Action definitions

Given a bounding box b = (x,y,w, h):
 left/right: x <« x + ax
* up/down: y « y+ ah
* bigger/smaller: w < w + aw, h < h+ ah
e fatter: w <« w + aw
 taller:h < h + ah
* stop:no changeinb

e Shift factor a = 0.1

Training Algorithm

e Repeat for N epochs:
* For each (img, skew) in training set:
e current_box & skew;
* Initialize state s & HOG features from skew, O history vector;
* For action =1to 15:

* Agent adjusts the box according to to epsilon-greedy. State
s’ obtained;

 Compute change in IOU-value to obtain reward r;
* Update perceptron weights;
* w; «wp+n(o(r+ymaxQ(s’,a’)) —Q(s,a))s;
a’
* current_box < new_box;
s& s

